分类 数据库 中的文章

Column-Stores vs. Row-Stores: How Different Are They Really?

论文中通过行存系统来模拟列存,并将几个可能提升的关键点:延迟物化、块迭代、压缩、invisible-join,挨个拆分,并分析每种可能提升的原因和提升比例‘在行存的系统中使用垂直分区依然达不到列存性能,因为垂直分区后需要冗余存储主键,重建这些tuple 需要hash-join,数量大内存CPU开销也大;全索引如果返回的数据多hash-join压力大可能会更慢,反之可能更快;物化视图最好只需要读取部分数据,bitmap选择率高时效率会变差。对于列存:块迭代可以提升5% - 50%性能(取决于压缩)、invisible-join可以提升50% - 70%、压缩为2倍,如果数据有序可以量级提升、延迟物化提升3倍,如果将这些全部去掉,列存跟行存就差不多了;在列存中使用反规范化大宽表效果不好,增加维度表列冗余数据变多、只有大宽表的维度属性是排序高度压缩的才有效

阅读全文

Lakehouse A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics

第一代的数仓有很好的数据治理,缺点是计算存储耦合,且无法存储半结构数据;第二代的数据湖将计算存储分离,且能存储各种格式,云厂商推出的对象存储本质是差不多,不过扩展和可靠性更高更便宜,但二代需要两套系统,数据要在数仓和对象存储之间做ETL,有很多问题;而LakeHouse则试图解决这些问题,通过在对象存储之上增加元数据管理,实现事务功能,数据质量、ACID都实现了,因为是基于开放的格式,不会锁定厂商,也能支持各种场景。因为开放的格式和对象存储的延迟问题,性能和每秒事务不会很好,通过缓存系统、辅助数据结构、数据布局优化来优化性能,另外DataFream 支持SQL和 API,可以延迟处理这样可以进一步优化。目前的限制:S3的延迟、单表事务、servless;通过TPC-DS对比其他云厂商的数仓,性能和价格都很不错,还能支持传统场景,机器学习、科学分析等各种复杂场景。

阅读全文

Building An Elastic Query Engine on Disaggregated Storage

SnowFlake的一篇论文,目前的架构包含四层:中心化的服务处理端到端的查询、计算层、临时存储层、对象存储层,并讨论了设计临时存储这一层的原因,通过访问数据指标能发现,临时存储的需求变化很大,跟计算层,远端持久存储层都不同。为更好的提高利用率需要计算层跟 临时存储层解耦。调度方面包括:工作窃取、延迟的一致性hash。由于云厂商的计费方式支持到秒级别,原先的预热VM 方式不好使了需要采用共享资源的方式来支持多租户,带来的挑战是,重新设计临时存储层(这层缓存了持久数据和中间数据,扩容会影响其他租户),需要提供私有地址。三个开放问题:临时存和计算层解耦、内存-SSD-远端存储三层机制的有效管理、亚秒计费策略的共享资源架构挑战

阅读全文

What Goes Around Comes Around

Stonebraker的论文,介绍了 9个不同时代的数据模型;层次数据库IMS,以及网络数据库CODASYL,这两者都是逻辑数据、物理数据耦合,之后出现了关系模型,有了数据独立;再往后就是各种对关系模型的补充,如实体-关系模型、关系模型++、语义数据模型、OO模型、对象关系模型、半结构模型等;从中我们可以总结到:查询优化器很有用、技术的争论通常由市场和其他因素决定,简单模型比复制模型更容易实现数据独立、KISS 保持简单是很重要的、除非用户使用中出现很大问题否则他们不会买单、没有编程语言社区的支持想在语言上做改进突破很难、新技术的推广,需要标准化,或者大力度的推广、schema-last 可能只合适小部分场景

阅读全文

bustub数据库

卡耐基梅隆的bustub数据库,实验课程;包括:LRU-k实现、可扩展的hash表、B+的的增删改查、B+树的并发控制、各种SQL算子的执行和优化,并发处理

阅读全文

Efficiently Compiling Efficient Query Plans for Modern Hardware

这是HyPer的一篇论文(HyPer是由德国莫尼黑大学主导的OLAP、OLTP混合型主内存数据库),介绍了code-gen的具体实现,最初HyPer的code-gen是生成了C++代码,然后使用gcc编译;但编译时间很长,再加上优化时间就更长了,甚至比查询执行时间还长;于是HyPer做了优化,改用LLVM,将code-gen的核心代码转为了LLVM的IR,这个IR是调用LLVM的API生成的,不是手写的所以相对容易一些,对于一些简单的操作是生成了LLVM,于是复杂的操作,如scan、join、sort需要将LLVM和C++混合执行,LLVM可以直接调用C++,所以不存在性能损失;通过最后执行来看,LLVM的code-gen从编译、优化时间,SQL执行时间,都比其他系统有很大提升

阅读全文

Generating code for holistic query evaluation

英国爱丁堡大学的一篇论文,从传统系统到现代系统的变化一个重要点是:内存增大很多,以前的I/O瓶颈对于现在来说不那么重要了,反而是CPU和内存瓶颈;而之前的火山模型对于CPU利用率来说很不好,大量的虚函数调用,多层级的函数调用增加了cache miss,也会产生更多的指令,不利于并行化和cache局部性;这篇论文提出了一个代码模板,通过识别不同的查询计划算子,来对应的生成不同的代码(对应一个大函数),不同函数之间通过物化来连接,之后通过编译器GCC来编译这段C代码,还可以对代码最O2级别优化(但会增加运行期执行时间)来达到更好的效果,论文对比了join、sort、聚合,虽然使用的是NSM存储模型,但是执行效果来看跟MonetDB的DSM差不多了;代码生成的缺点是对于小查询会有额外的开销(编译、优化、link时间)

阅读全文

Implementing Database Operations Using SIMD Instructions

介绍了SIMD指令一些基本概念,并行流水线,以及分支预测失败带来的影响;论文中提到了使用SIMD指令的方式,以及不同平台产生的差异;之后用伪代码的方式描述几个数据库常用操作;scan操作详细对比了标量版和SIMD版的区别,以及如何消除分支的方式,还有返回选中的一个元素、多个元素的标量、SIMD方式;聚合的实现方式SIMD有提供相关的操作 SIMD_min、SIMD_max即可,对于索引部分主要是介绍树结构索引,详细讨论了中间节点、叶子节点的实现方式;在有序元素上使用二分效率是非常高的,但也会有分支预测失败问题,论文中给出了混合二分+顺序扫描方式;最后是join处理方式,这里只列出了nested-loop join的SIMD实现,Duplicate-outer、Duplicate-inner、Rotate-inner

阅读全文

Rethinking SIMD Vectorization for In-Memory Databases

这是Oracle联合哥伦比亚大学做的研究,论文中讨重点讨论了数据并行化(线程、指令、数据),也就是SIMD实现;论文中给出了一些基本的SIMD操作,如selective sotre/load、gather、scatter,在论文发表的时候,这几个操作主流CPU不是全支持,只能通过一些模拟操作来支持,如permutation等;通过定义这四个最基本的操作,再往上就可以定义数据库查询中比较重要的操作了,如:scan、hash-table(horizontal、vertical、build、线性探测、double hash、cuckoo hash)、bloom filter、分区(radix、hash、range);通过hash、分区等操作,又可以定义出排序、join等更复杂的操作,相当于是层层搭积木;测试结果SIMD会有大幅度性能提升,但也受到cache size的影响

阅读全文